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Abstract 
In an international and constantly evolving market, the agri-food is an important 

economic sector for countries, like Italy, that are in the Mediterranean region. In recent 
years, smart digital technologies, machine learning, and big data have been playing an 
important role in improving the physical production of goods and the quality of 
operations of the agriculture sector. For example, sensors that a few decades ago were 
available only in small research greenhouses, now can be deployed in agricultural 
fields. The information they can transmit over the internet can be used to make real 
time adjustments to the various steps needed to harvest an agriculture product. 
Ultimately, the digital solutions applied to agriculture aim to limit waste while 
minimizing human labour. The “From farm to fork” strategy of the European Green Deal 
identifies digital technologies as the tools to achieve greater agricultural sustainability. 
In order to guarantee greater profitability, once a quality agriculture product has been 
harvested, it is necessary to enhance it by certifying its origin and by disclosing the 
methods used to produce it and by reporting on the safeguard systems adopted. For 
these reasons, it is vital to follow agricultural standards that can give the product a 
certification of quality. For example, data analysis, smart labels, blockchain and smart 
contracts, that follow standardized protocols, are tools that, in addition to certifying the 
origin of a product, can reduce brokerage costs, improve deliver time, maintain 
persistent quality while minimizing human errors. In this study we conducted a 
literature review on the articles published in last two International Symposia on 
Mechanization, Precision Horticulture, and Robotics with a focus on innovative 
technologies and their fields of application developed for the agri-food sector. An 
overview of the impact of implementing and following standardization practices is 
presented as well. 
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INTRODUCTION 
The new common agricultural policy and the “From farm to fork” strategy of the 

European Green Deal identify digital as the tool to achieve greater agricultural sustainability. 
The growing world population is generating more and more demands for food production. 
The technology applied to agriculture aims to limit waste and lighten man’s work. Farmers 
have understood how technological innovations such as sensors, apps and information 
transmitted over the internet can help them (Hung et al., 2016). Advances in electronic and 
computer science research are impacting the quantity and quality of horticultural production 
by improving economic, environmental and social sustainability. Major areas of recent 
research include hyperspectral sensing, computer vision, artificial and convolutional neural 
networks, and unmanned aerial vehicle (UAV). These components and systems are developed 
for a wide variety of horticultural products including citrus fruits, apples, potatoes, tomatoes 
and ornamental plants (Schueller, 2020). 

Drones have replaced the human eyes and sensors make decisions that result in saving 
water, energy and labour. Technological innovations are creating a different way to farm that 
attracts a new generation of agronomists and engineers who work together (Cerbini, 2022). 
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Agriculture 4.0 is the evolution of precision agriculture. Agriculture 4.0 uses Internet of Things 
(IoT), big data, artificial intelligence and robotics to extend, speed up, and increase the 
efficiency of activities that impact the entire production chain. In 2020 agriculture 4.0 in Italy 
generated around 540 million euros, with a growth of 20% compared to 2019. (Aquaro, 2022). 
The goals of this paper were: 1) to summarize the technological innovations and their fields 
of application that have been presented at the last two International Symposia on 
Mechanization, Precision Horticulture, and Robotics; 2) to highlight how standardization 
efforts can contribute to the grow of the agri-food sector by reducing brokerage costs, 
improving deliver time, maintaining persistent quality while minimizing human errors. 

MATERIALS AND METHODS 
This literature review is based on articles published during the first and second 

International Symposium on Mechanization, Precision Horticulture, and Robotics: Precision 
and Digital Horticulture in Field Environments, held respectively in Brisbane (Australia) in 
2014 and in Istanbul (Turkey) in 2018. The articles that presented a simple overview of 
innovative technologies in horticulture and the articles that offered ideas on possible 
innovations were excluded. Only articles that presented practical innovations were taken into 
consideration. Subsequently, the articles were grouped according to the field of application 
and the technological innovation presented. All the articles presented at the conferences were 
collected and published after two years in the journal Acta Horticulturae, respectively in 
volumes 1130 and 1279. 

RESULTS AND DISCUSSION 
Twenty-five articles were identified. Table 1 summaries the results by identifying the 

first author of the study and the year of publication in the first column. The second column of 
Table 1 shows the field of application, the third columns the agri-food focus and the last 
column the technology presented. 

Seven articles focused on fruit quality monitoring (Onwude et al., 2020; Percival et al., 
2016; Xu et al., 2016; Bargoti et al., 2016; Underwood et al., 2016; Layden and O’Halloran, 
2016; Robson et al., 2016), four articles presented the estimation of the yield of fruit trees 
(Sarron et al., 2020; Bresilla et al., 2020; Payne et al., 2016; Hung et al., 2016), four articles 
were centred on the water status of crops (Delalande et al., 2020; Coulombe et al., 2020; 
Montoya et al., 2020; Camps et al., 2020), two articles on crop disease detection (Ampatzidis 
et al., 2020; Atshan et al., 2020), three articles on precision viticulture (Poblete-Echeverrıá et 
al., 2020; Gatti et al., 2020a, b), one article focused on tree thinning (Pflanz et al., 2016), two 
articles focused on the amount of nitrogen in trees (Perry et al., 2016; O’Connell et al., 2016), 
and two articles presented mechanization in horticultural applications (Patten et al., 2016; 
Hemming et al., 2016). 

Robot 
Automation is one of the new frontiers of agricultural mechanization and it has the 

potential to revolutionize the work in the fields and to provide some of the answers to the 
needs for greater competitiveness, productivity and sustainability of modern companies. 
Having agricultural machines and robots that autonomously carry out agronomic operations 
allows to reduce the use of fertilizers and pesticides and to improve the safety of farmers who 
do not have to be exposed to risky situations or chemicals that are potentially harmful for 
their health. Robotics and automation are helping to make high-resolution, timely, farm-level 
measurements for tasks such as yield estimation, crop health and soil analysis. Robotics and 
intelligent sensing systems can provide useful information to improve yield and quality in the 
production of specialty crops. A mobile land robot with a scanning lidar (laser range sensor) 
can build a three-dimensional (3D) model of an orchard by associating data from individual 
trees and deriving algorithms to automatically detect and segment each tree (Underwood et 
al., 2016). Mechanization in horticulture tends more and more to automation. It is an 
unstoppable evolution, useful to simplify man’s work and/or necessary to make it possible, 
fast and accurate. Vegetable production is characterized by intense traffic, especially during 
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harvesting. A group of researchers studied a multi-robot system for horticulture applications 
(Patten et al., 2016). Another study ran experiments for robotic harvesting of sweet pepper 
fruits, solving the problem of reaching, grabbing and detaching the fruit efficiently, without 
damaging it (Hemming et al., 2016). Wine industries are susceptible to the impacts of climate 
change and associated stresses, including water scarcity. One approach to provide alternative 
solutions to the sector is to invest in technological solutions for better vineyard management. 
The use of technologies, such as robots and sensors, to monitor vineyards offers solutions to 
support vineyard management decisions. A group of researchers developed a remote-
controlled robot prototype that was tested in the vineyards in combination with a series of 
sensors (laser LiDAR scanner, non-contact electromagnetic induction device, thermal cameras 
and high-definition cameras) with the goal of collecting information through the seasonal 
trend (Poblete-Echeverrı́a et al., 2020). 

Table 1. Literature review summary. 

Study Field of application Agri-food focus Technological  
innovation 

Sarron et al., 2020 Estimation of the yield of fruit 
trees 

Mango fruits Algorithm, digital imaging 

Bresilla et al., 2020 Estimation of the yield of fruit 
trees 

Apple trees Algorithm 

Onwude et al., 2020 Fruit quality monitoring Sweet potatoes Digital imaging 
Ampatzidis et al., 2020 Crop disease detection Grapevine Artificial intelligence,  

machine learning 
Poblete-Echeverría et al., 
2020 

Precision viticulture Grapevine Robot, sensors 

Delalande et al., 2020 Water status of crops Apple trees Sensors 
Gatti et al., 2020a Precision viticulture Grapevine Sensors 
Gatti et al., 2020b Precision viticulture Grapevine Sensors 
Atshan et al., 2020 Crop disease detection Pepper crops Sensors 
Coulombe et al., 2020 Water status of crops Chili pepper Sensors, digital imaging 
Montoya et al., 2020 Water status of crops Indoor plants Sensors 
Camps et al., 2020 Water status of crops Tomatoes and aubergines Algorithm 
Percival et al., 2016 Fruit quality monitoring Wild blueberry Sensors 
Patten et al., 2016 Mechanization in horticultural 

applications 
Crop fields Algorithm, robot 

Xu et al., 2016 Fruit quality monitoring Blueberries Sensors 
Bargoti et al., 2016 Fruit quality monitoring Apple trees Unmanned vehicle 
Underwood et al., 2016 Fruit quality monitoring Almond trees Robot, sensors 
Layden and O’Halloran, 
2016 

Fruit quality monitoring Plants of carrots, sweet 
corn 

and green beans and 
strawberries 

Sensors 

Pflanz et al., 2016 Thinning of trees Apple trees Sensor, geographic information 
system 

Robson et al., 2016 Fruit quality monitoring Avocado fruits Sensor, geographic information 
system 

Payne et al., 2016 Estimation of the yield of fruit 
trees 

Mango fruits Digital imaging 

Perry et al., 2016 Control of the amount of nitrogen 
in trees 

Apple and pear trees Sensors, unmanned vehicle 

Hemming et al., 2016 Mechanization in horticultural 
applications 

Pepper harvest Robot 

O’Connell et al., 2016 Control of the amount of nitrogen 
in trees 

Almond tree Sensors 

Hung et al., 2016 Estimation of the yield of fruit 
trees 

Apple, mango, lychee  
and almond orchards 

Algorithm, robot 

The 25 identified articles can also be classified according to the type of technological innovation presented. 

Sensors 
Sensors help to assess the health of crops, which will allow farmers to program targeted 
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treatments. Sensors are critical to detect the state of the soil, and they can plan adequate water 
irrigations. A group of researchers in collaboration with vegetable (carrot, sweet corn and 
green bean) and strawberry producers, validated Greenseeker® biomass sensors together 
with remote sensing and variable speed or prescription mapping. The goal was to try to 
improve market yield through early detection of crop stress or poor performance due to biotic 
and abiotic factors. (Layden and O’Halloran, 2016). Sensor technologies can be used in wild 
blueberry production that apply pest control products precisely to targeted areas of interest 
only (Percival et al., 2016). An article investigated the impacts in commercial blueberry 
packaging lines that could cause impact damage to blueberries that will result in fruit 
bruising. The impacts were quantitatively measured using a miniature instrumented sphere 
(Xu et al., 2016). Irrigation is one of the most important inputs into horticultural production 
systems, but current management practices generally do not allow for the precise delivery of 
irrigation inputs where and when they are required within a crop. High resolution sensors for 
the accurate calculation of vegetation and/or stress indices (e.g., NDVI, GNDVI, MCARI2, PRI) 
that reveal phenotypic changes in the structure of individual vegetation cover and/or leaf 
functions were investigated (Delalande et al., 2020). Two articles studied remote sensing 
platforms for the description and management of precision viticulture, in a ‘Barbera’ vineyard 
located in the Colli Piacentini wine district (Gatti et al., 2020a, b). A low-cost open-source 
microcontroller platform, Arduino, was used to monitor and to control several variables in 
food production systems (Montoya et al., 2020). Disease control is a key aspect for crop 
production and early detection of disease incidence is therefore an important aspect of crop 
management. Visual assessment of cultures is the most used approach, but it is costly 
especially at low levels of infection. Another study investigated the potential of sensor 
technologies to detect diseases in a pepper crop earlier than is currently possible with visual 
assessment (Atshan et al., 2020). The amount of nitrogen in crops affects the growth and yield 
of trees, so knowing the state of nitrogen is important to optimize nutrient management, 
minimize input costs and avoid environmental pollution. A study evaluated the use of remote 
sensing to assess the amount of nitrogen in the canopy through the canopy chlorophyll 
concentration index of apple and pear trees (CCCI) (Perry et al., 2016). Another study made 
satellite estimates of nitrogen status for potential application to orchard fertilization 
programs to overcome existing cost and sample size limits and to account for the effects of 
vegetation cover (O’Connell et al., 2016). 

Geographic information system (GIS) 
Over the last few years, GIS software application have been used in the applications of 

geomatics, that is the discipline that integrates the study of the territory and the environment 
with information technology, and which also includes territorial information systems. GISs are 
attracting the interest of an ever-growing audience, especially as a decision support tool. A 
study used satellite imagery, Geographic Information Systems and Google Earth to audit trees 
and to define the spatial variability of ‘Hass’ avocado tree conditions in Childers, Australia 
(Robson et al., 2016). Producing fruit that provides high quality, good shelf life and consistent 
long-term yields requires adjusting the crop load on fruit trees by reducing the number of 
flowers. Thinning is important to produce high quality fruit with adequate size. Hand thinning 
contributes a large part to the total cost of production, as hand thinning is labour-intensive 
and labour costs are rising. A group of researchers studied a new mechanical system for flower 
thinning that combines a camera-based sensor to identify the density of flowers in situ and a 
mobile geographic information system (Pflanz et al., 2016). 

Artificial intelligence 
Artificial intelligence is the ability of a computer system to mimic human cognitive 

functions such as learning and problem solving. Artificial intelligence methods can be used by 
agricultural robots to locate and scan territories and crops, to recognize the type of plant and 
to monitor its status in real time by acquiring images and collecting sensory data such as 
temperature, humidity, or pH level of the soil. Machine learning is considered a subset of 
artificial intelligence. Therefore, cost-effective alternative approaches for the early detection 
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of diseases and parasites are desirable. A study presented a vision-based support tool for 
yellow grapevine (GY) disease detection using artificial intelligence (AI) and machine learning 
(ML) (Ampatzidis, et al., 2020). 

Digital imaging 
Aerial photography and satellite imagery are used to monitor areas. Since the images 

are acquired frequently, it is possible to identify, without human intervention, the cultivated 
crops and monitor certain agricultural practices. Red Green Blue (RGB) imaging can be used 
to monitor sweet potato quality during drying and demonstrated that RGB imaging can serve 
as a non-destructive tool to detect changes in agricultural product quality during drying 
(Onwude et al., 2020). In recent years, with the increase in agricultural production, the need 
for more precise tools and practices has increased. One of these practices is the estimation of 
the number of fruits in the tree. Numerous studies have provided fruit tree yield estimates 
based on machine learning with high levels of efficiency. An efficient machine learning method 
for detecting ripe mango fruit from RGB images and tested under heterogeneous field 
conditions for estimating tree yield was developed in Senegal (Sarron et al., 2020). 
Multispectral and thermal imagery was assessed to directly assess crop water status on a 
spatial scale not possible with current soil sensor probe systems, and thus helped improve 
irrigation decision making (Coulombe et al., 2020). Several image processing algorithms were 
evaluated for mango crop load determination, including hyperspectral and thermal imaging, 
but with preference for RGB imaging (Payne et al., 2016). 

Algorithm 
Over the past decade, machine learning algorithms have demonstrated its potential for 

detecting and counting plant organs, for improving crop quality and increase sustainability. 
These algorithms favour the creation of an optimal environment for agriculture, without 
chemicals and pesticides, in order to eliminate waste and sources of pollution. Computer 
vision techniques such as oriented gradient histogram and edge detection were used to 
extract features and recognize fruit based on shape and colour (Bresilla et al., 2020). A system 
consisting of ground-based robots and processing software was used to estimate fruit yield. 
The robots collected image data, which was automatically processed using algorithms in a 
software pipeline (Hung et al., 2016). A group of researchers recorded and analysed the non-
invasive “Electroplantogram” EPGs of tomatoes and aubergines to detect the water deficit of 
plants in real time, in order to improve the efficiency of crop management (Camps et al., 2020). 

Unmanned vehicle 
Remote control systems, or more common drones, represent a particularly useful and 

very popular technology, as it allows farmers to fly over a field and collect detailed images 
from analysis for the most diverse purposes such as the level of ripeness of fruits or the onset 
of a disease on a plant. Close-up images obtained from multiple perspectives can be used to 
generate three-dimensional representations of the plant. A group of researchers investigated 
an efficient means of storing and processing information resulting from the discretization of 
individual trees using an unmanned land vehicle that captured three-dimensional laser beam 
data and image data on rows of orchards (Bargoti et al., 2016). 

CONCLUSIONS 
Appropriately integrated digitalization and sustainability can offer a safe path from field 

to fork. It is known that the quality of the final product strongly depends on compliance with 
certain standards, often disregarded because the individual steps are affected by factual 
transparency. Standards are a common language that allows researchers, people, public 
institutions and industry to communicate, produce and market products and services. Once a 
quality product has been obtained, in order to obtain greater revenues, it is necessary to 
enhance it, certifying the origin of the product, the methods used, and the safeguard systems 
adopted. Hence the importance of standardization throughout the agri-food sector, an 
essential requirement for the achievement of the corresponding quality certifications 
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downstream. Data analysis, blockchain and smart labels are tools that, in addition to certifying 
the origin, make procedures faster, standardized and therefore less subject to human error. 
Standards will be key to achieving the green and digital transitions of our economy. 

The European Green Deal and the Industrial Strategy for Europe make it clear that 
developing new standards will be essential to strengthen the competitiveness of industry, 
build a sustainable future and shape a Europe fit for the digital age. Standards also allow for 
the interoperability of technologies and materials: as a standard provides details on the use 
and content of a technology or material, it is much easier to know when and how it can be 
used in conjunction with other technologies (EC, 2022). 
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